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Abstract

In this study equations of motion for a satellite in a

planar, elliptic four-body system are used to generate an

orbit about L . Initial conditions and a periodic reference

orbit were found using a circular four-body model. Linear

constant gain feedback is used to stabilize the orbit about

L3 in the planar, elliptic four-body model. The computed L3

orbit is plotted against the reference orbit to assess the

effectiveness of position, velocity and position/velocity

feedback compensation systems. Also computed is the inte-

grated control gain costs for each type of feedback system

used. Long term stable motion near libration point L3 was

acheived using position/velocity feedback compensation. Po-

sition and velocity feedback when used separately were inef-

fective as stabilizing feedback compensation systems. The

integrated control gain costs also indicate that linear con-

stant gain feedback is not an economical method to stabilize

this periodic orbit about L3.
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STABILIZING AN UNSTABLE ORBIT ABOUT

L3 IN THE SUN, EARTH, MOON

SYSTEM USING LINEAR CONSTANT GAIN FEEDBACK

I. Introduction

Background

There is a vast wealth of knowledge on the so)ject of

periodic orbits in the restricted three-body problem. Solu-

tions are well known and show that five equilibrium points

exist. They are Lagrange points Li, L2 , L3 , L4 and L5, so

named for the individual who first solved this special case

of the restricted three-body problem. Two of the five equi-

librium points are stable, namely L4 and L5 ; while the re-

maining three are unstable. Because of the stability prop-

erties of L4 and L5, these points have received the greatest

amount of numerical analysis over the past twenty years. To

a lesser extent the same analysis was performed on LI, L2

and L3.

In the restricted four-body problem, stable points L4

and L5 do not exist. That is, a satellite placed at L4 or

L5 , as well as Ll, L2 and L3, will drift away due to the com-

plex gravitational interaction of the Sun, Moon and Earth.

However, with the proper choice of initial conditions, a

satellite can have periodic motion about an equilibrium

point. This point was covered by Capt. J. E. Wheeler (Ref 1)
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in his thesis on periodic motion about L4. He found that

periodic motion about L4 did exist in the restricted four-

body problem, and that this orbit definitely exhibited linear

stability.

Capt. W. E. Wiesel (Ref 2), in unpublished research,

discovered a periodic orbit about L3 using the same tech-

niques as Capt. Wheeler. It is theorized that if a satellite

can be maintained in an orbit about L3 coupled with satellites

in orbit about L4 and L5, then total Earth coverage can be

acheived. Figure 1 schematically shows the relative positions

of orbits about L3, L4 and L5 with respect to the Earth. Such

coverage could be utilized in world-wide communications. Add-

itionally, intelligence benefits to the military from such

strategic orbital positions would be invaluable. T. K. Berge

(Ref 3) mentioned this fact in his paper on Lunar Libration

Points.

Since transfer trajectory timec' from Earth to these orbits

are approximately two to eight days, significant lead time

important for satellite protection and survivability is great-

ly enhanced. Further, any stabilized orbits in the vicinity

of L3 , L4 or L5 would be of great interest to the scientific

community for advancing space colonization and deep space

studies.

Problem and Sco2e

Capt. Wiesel (Ref 2) found, as mentioned above, an un-

stable periodic orbit about L3 in an idealized model. This

2



orbit was found by searching for a set of initial conditions

that would allow an orbit about L3 to close on itself. The

problem is to derive a linear constant gain feedback control

system to stabilize this orbit in a non-idealized model, and

to assess the long term control costs associated with such

stabilization. The non-idealized model used is not restricted

to circular motion but includes the elliptic pertubation caus-

ed by the Sun, Moon and Earth. However, all motion is restrict-

ed to one plane. Forces due to orbit plane inclination and

other planets are neglected as well as other minute forces.

A satellite placed in orbit about L3 in the idealized model

will remain in the vicinity of L3 for approximately four

months. However, the same satellite in the same orbit in

the non-idealized model would be well on its way out of the

Earth-Moon system in one month. Obviously, some sort of

control stabilization is needed in practical applications.

3
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II. Problem Analysis

Wheeler Model

Capt. Wheeler (Ref 1) derived the equations of motion

for his model using Lagrange's equations. He made several

important assumptions concerning the level of complexity.

The most important is that satellite motion is governed by

the gravitational interaction of the Earth, Moon and Sun in

circular orbits. Further, the Earth and Moon rotate about

their barycenter with a constant rate; and this barycenter

rotates about the Earth/Moon/Sun barycenter with a constant

rate. These assumptions allow the calculation of periodic

orbits. It should be pointed out that the effects of orbit

eccentricity and orbit plane inclinations are not included

in the equations of motion, because the effects are small

compared to the gravitational forces involved. Also, other

small perturbing forces such as the gravitational attraction

of other planets, solar wind, radiation pressure, etc. have

been omitted. Since orbit plane inclination is small, planar

motion was used throughout his report. Capt. Wheeler derived

his equations in an inertial reference frame centered at the

Earth/Moon/Sun barycenter; but he expressed them in the rotat-

ing Earth/Moon coordinate frame centered at the Earth/Moon

barycenter. This allows easy visualization of periodic orbits.

Lastly, imbedded in all these assumptions is that no control
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force is provided by the satellite. This means the satellite

will go wherever the forces of the Earth, Moon and Sun direct

it to go. Figure 2 is a diagram of the Wheeler restricted

four-body coordinate system.

In reality the Wheeler model is very idealized. This

idealization is necessary to obtain periodic motion. However,

accurate control cost assessment requires a realistic model.

Such a model would include the effects of non-circular orbits,

non-constant orbit rates and the ability of the satellite to

provide control forces.

Heppenheimer Model

In a recent paper on Space Colonization, T. A. Heppen-

heimer, (Ref 4) presented a more detailed model of the re-

stricted four-body problem. Satellite motion in his model

is governed by the gravitational interaction of the Earth,

Moon and Sun. In his model the Sun is in an unperturbed

elliptic orbit about the Earth/Moon barycenter. Equations

of motion for the Moon include the perturbing effects of the

Sun's orbit as well as the two-body forces due to the Earth.

As in the Wheeler model, the Heppenheimer model also assumes

planar motion.

In contrast to the Wheeler model, the Heppenheimer model

includes all of the major disturbing forces due to orbit ecc-

entricity. Those forces not accounted for in the Heppenheimer

model are: forces due to orbit plane inclination, other plan-

ets, solar wind and radiation pressure. A complete derivation

6
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of the Heppenheimer equations of motion is included in Appen-

dix A. A diagram of the Heppenheimer four-body coordinate

system is shown in Figure 3.

A weakness of the Heppenheimer model is that the equa-

tions of motion are expressed in a non-rotating Earth center-

ed coordinate frame. With this coordinate frame visualization

of periodic orbits is difficult at best. Therefore, illustra-

tion of the relative sizes and shapes of orbits computed in

the Heppenheimer model will be projected in the Wheeler

rotating coordinate frame.

Coordinate Transformation

Figure 4 illustrates the relative orientation of the

Heppenheimer coordinate frame superimposed on the Wheeler

coordinate frame. The following subscripts refer to points

used: a - origin of Wheeler Earth/Moon system; b - origin

of Heppenheimer system; o - origin of the inertial system;

and p - satellite position. For example r should be read
-p/a

as: the position of point p with respect to point a. Addi-

tionally, &i and 2i represent unit vectors in the Heppen-

heimer and Wheeler systems, respectively. Equation (1) des-

cribes the relative position vector between Wheeler and

Heppenheimer coordinates

r =r
-p/a -p/b b/a ()

where

Ep/a Xcei + Ye 2  (2)

ip/b =Xa + Y& 2 (3)
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r (4)
rb/a I

Solving Equation (1) for r and substituting in (2), (3)
p/b

and (4) yields
x1 + Y = (x- 1 )e + Y (5)

1  a 2 1 E 2

The Heppenheimer X coordinate in terms of Wheeler coordinates

can be found by vector dot of both sides of Equation (5) with

& . Likewise, the Y coordinate can be found by taking the

dot product of both sides of (5) with & . The results are
2

Xe = (11 - XE )Cos + Y EsinO (6)

Y = (P - X )sina - Y cosa (7)

Recalling Figure 4, the initial position transformations can

be found when t = 0, which implies = 0. Then

XU = V - XS (8)

Ya = -Ye (9)

The initial velocity conditions can be transformed in a

similar fashion. The following superscripts refer to the

reference coordinate frame used: a - Heppenheimer, e -

Wheeler, and i - inertial. For example V1  should be read-p/o

as: the velocity of point p with respect to point o as seen

by an observer in frame i.

The inertial velocity of a satellite in the Wheeler

frame is given by
Vi  =Vi + Vi (10)
-p/o -pa a/o

where

Vi =Ve + Wei x r (11)
p/a pa -p/a

11



Substitution of (11) into (10) yields

Vi ie ei i

-plo -p/a - -p/a + -ao (12)

Similarly, the inertial velocity of a point in the Heppen-

heimer frame is

Vi  i + -i (13)-p/o = Vplb + Vblo (

where

Vi  = Va + waixr (14)
-p/b -p/b - -p/b

vi v i  v i

-b/o -b/a -a/o (15)

and

i e ei
-b/a -b/a + _w Xrb/a (16)

Substitution of (14), (15) and (16) into (13) yields

i a ai + e ei i
= Vp/b + -w xrp/b Yb/a + - xrb/a + -a/o

Equating (12) and (17) and solving for Vp/b gives

Va Ve e ai ei ei
p/b -- p/a -b/a - ×r-p/b - E Xrp/a - 2 xb/a (18)

Since w = 0 in the Heppenheimer frame and Ve/a 0 in the

Wheeler frame equation (18) reduces to

Va  Ve + wei r ei ×r (19)

p/b -p/a - p/a - -b/a

Equation (19) gives the Heppenheimer velocity in terms of the

Wheeler velocity, position and angular coordinates. One addi-

tional transformation is needed. Since the Wheeler time unit

is based on the synodic period and the Heppenheimer time unit

is based on the sidereal period, the Wheeler velocity must be

12



multiplied by the value of the sidereal period divided by the

synodic period. That is

dtw = 27.32166101 days per synodic month (Ref 5:334)

and

dth = 29.5303882 days per sidereal month (Ref 5:334)

where the subscript w refers to Wheeler time and h to Heppen-

heimer time. Then

dr _ dr dtw, dr

a---(-) - (.9251986728) (20)
- wdt dth dtw

letting
dtw

- = Sf = .9251986728 
(21)

dth

Integrating (20) and (21) into (19) gives

Va  = V e  ei ei

-p/b -p/a f -p/a - -xb/a (22)

Writing equation (22) in vector components, performing the

indicated operations and finally dotting both sides with ,1

then 2 yields, respectively

S= (Y - X(Sf)}cosO + QYE(Sf) - (ji-XF)8}sino (23)

Y = {Y8 - (Sf) }sin8 - { E(Sf) - (11-X)8}cosa (24)

Recalling Figure 4, the initial velocity transformations can j
be found when t = 0 which implies 8 = 0. With 8 = 1, a value

which is the constant rate in the Wheeler model, Equations

(23) and (24) reduce to

X =YC - Xr(Sf )  (25)
Cc = 1-X - Y(f) (26)

13



Equations (8), (9), (25) and (26) will be used at a later time

to transform Wheeler initial conditions into Heppenheimer ini-

tial conditions.

Verification of the Reduced

Heppenheimer Equations of Motion

Before proceeding into a detailed analysis of the problem,

there are certain routines and equations that need to be veri-

fied. Comparison of a known solution with the solution gener-

ated by the Heppenheimer model will verify that Heppenheimer

equations have been correctly programmed. A logical choice

for this comparison is the Wheeler L4 solution. Reduction of

the Heppenheimer model to an equivalent Wheeler model requires

setting the eccentricity of the Sun to zero, a value that

causes circular motion. Also the mass of the Sun is set to

zero in the equations of motion for the Moon. This effectively

removes the Sun's perturbation upon the Moon's orbit and en-

ables the Moon to have a circular orbit provided that the

proper initial condition for the Moon's velocity is chosen.

The velocity required for a circular orbit of radius r can be

calculated from the energy equation for two-body motion which

is
2

E = --- = (Ref 9:34)
2 r 2a

For circular orbits r = a, then circular velocity becomes

Vc =

For this specific case V = 1, the mass of the Moon plus the

mass of the Earth. Also, r = 1, the distance from the Earth

14



to the Moon. Therefore, the required circular velocity of

the Moon is

Vc = 7//I = 1

Recalling Equation (A-lI) and applying the above simplifica-

tions, the reduced Heppenheimer equations of motion are

x+- = 0 (27)m Rm 3

.. Y
y+- = 0 (28)
m Rm

(1 Xc-Xs Xs  Xc-Xm xmXc ( Xc Ms( rs + ) -P( r-- + (29)

rr3 r3 r3 r3
c s s cm in

""Y M Y c-Y s Y s Yc-Ym Ym
Yc~~ ~ + (lpy s -) P ( r---- + -m) (30)

rrcs cm r

where the subscripts c, s, and m stand for satellite, Sun,

and Moon, respectively.

Capt. Wheeler (Ref 1:62) gives the initial conditions

for periodic satellite motion about L4 as

• = -. 72418782459

YF = .81568639689

Xe = .07948061949

= .22438007788

Recalling equations (8), (9), (25) and (26) where V = .0121396054

(Ref 6:517), the equivalent Heppenheimer L4 initial conditions

are
X = .73632742991 (31)
a

YI = -.81568639689 (32)

Xa = .74215103322 (33)

Yc = .52873127973 (34)

15



Analogously, Capt. Wiesel (Ref 2) gives the initial condi-

tions for L3 as

X = .9967446273

Y = 0.

X = 0.

= .0210258862

Thus, the equivalent Heppenheimer L3 initial conditions are

X = -.9846050219 (35)

Y = 0. (36)

= 0. (37)

c = -1.004058144 (38)

Numerically integrating equations (27) through (30) with

initial conditions (31) through (34) for one period did result

in the same periodic orbit about L as found by Capt. Wheeler

(Ref 1:63). As a further check the same procedure is applied

to L3 using initial conditions (35) through (38). After the

end of one period, the Heppenheimer model did reproduce the

same orbit discovered by Capt. Wiesel. It should be noted

that one period in the Wheeler model is 2r radians; but due

to the different time scales, one period in the Heppenheimer

system is
dt w ) TwS dT h (39)

h w dt h Sf
2ir

Th 2 -S 6.791174148 (40)
Sf

Figure 5 represents the L orbit presented by Capt. Wheeler
4

(Ref 1:63), and Figure 6 is the same L4 orbit generated by

the reduced Heppenheimer model. Fiaure 7 is the L3 orbit

,6



discovered by Capt. Wiesel, and Figure 8 is the same L3

orbit generated by the reduced Heppenheimer model. Even

though the reduced Heppenheimer model is able to accurately

reproduce known solutions as shown above, no known solution

exists for the complete Heppenheimer model.

One final check on the correct implementation of the

complete Heppenheimer model is needed. It is reasoned that

over a long period of time the motion produced by each model

should be drastically different. This difference is caused

by the fact that the Heppenheimer model is a "real world"

model; while the Wheeler model is only an idealized version

of the Heppenheimer model. For comparison each model was

run for four months. Figure 9 shows the unstable but "semi"

orderly motion of the L3 orbit in the Wheeler model as it

departs the Earth-Moon system. Figure 10, on the other hand,

illustrates the catastrophic instability of the same L3 orbit

when run in the realistic Heppenheimer model.

17
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III. Feedback Control

Stability of Periodic Orbits

In general the second-order non-linear differential

equations of motion can be cast into a set of first order

non-linear differential equations with the form

k(t) = f(X(t),t) (41)

which states that the first order non-linear equations of

motion are functions of the states themselves and time.

For small displacements from the states at any time, t,

equation (41) becomes

X(t) + 6k(t) = f{(X(t) + 6x(t)),t} (42)

Expanding the right side of (42) as a Taylor series in 6X(t)

results in

*(t) + 6 X(t) f(X(t),t) + - X(t)
-X(t -

+ higher order terms (43)

Neglecting higher order terms and recalling (41), equation

(43) reduces to

6(t) 6 -- 6X(t) (44)
BX(t)

Which relates small displacements in the states to changes

in the equations of motion. As a simplifying step, let

A(t) - B

aX(t)

Where the components of

24



A(t)' i -jXj
ax.i

are partial derivatives of the equations of motion with re-

spect to the individual states. In this case A(t) is not

only time varying, but also periodic.

Meirovitch (Ref 7:264) states that a general solution

to Equation (44) when evaluated along a periodic orbit is

N a.t
SX(t) = E Q (t)e ) (45)

j=l -

The quantities a. are called the Poincar6 or characteristic

exponents. Matrix Q represents the direction and magnitudes

of oscillation about the equilibrium point. As stated, equa-

tion (45) relates the deviation from a periodic orbit as a

function of the Poincar4 exponents. It can also be shown that

6X(t) = 0(t,0)6X(0) (46)

Where 0 is the mondromy matrix, or more commonly referred to

as the state transition matrix. Combining equations (45) and

(46) and evaluating after one period, T, yields

a.T

6X(T) = Qj(T)e I = 4(T,O)Qj (O) (47)

Utilizing the fact that Qj(T) is periodic and rearranging

gives GjT
{f(T,0) - e I} Q (0) = 0 (48)

Obviously equation (48) represents an eigenvalue problem

where the eigenvalues of O(T,O) are
a.T

A. = e 3 (49)
1

Solving equation (49) for the Poincar6 exponent gives
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r1

J logx i  (50)

Since for this problem equation (44) represents a Hamiltonian

system, Meirovitch (Ref 7:275) further states that the char-

acteristic exponents for such a system occur in positive and

negative pairs. For stability, in a linear sense, the real

part of the a .'s determines the stability. Thus, any negativeJ

real part implying stability automatically carries with it a

conjugate of the opposite sign implying instability.

Since the orbit about L3 is unstable, it is obvious that

at least one pair of a.'s have non-zero real parts. Orbital

stability in a linear sense is acheived by reducing these non-

zero values to purely imaginary. The simplest means would be

with linear constant gain feedback control. However, using

feedback control causes the dynamical system to become non-

Hamiltonian. Therefore, the minimum criteria for stability

is now that all a,'s must be purely imaginary. When all a,'s

are purely imaginary, the system exhibits "critical behavior."

In this case the system can be either stable or unstable depend-

ing upon the higher order terms, which were neglected in the

linearization. When all a.'s possess negative real parts,

then the system is "asymptotically stable."

Feedback Compensation

Compensation of a system by adding poles and zeros is used

to improve system performance. Three types of state feedback

compensation systems will be analyzed for cost and effectiveness.
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They are position, velocity and position/velocity. Since a

measure of cost is the total control gain per unit time need-

ed to maintain orbital stability; the stabilizing effects of

feedback compensation are first verified using the Wheeler

model. If stability in the Wheeler model cannot be acheived,

it is futile to attempt to stabilize the Heppenheimer model.

Logically, stability in the Wheeler model does not necessarily

imply stability in the Heppenheimer model; or even if stabil-

ity can be acheived in the Heppenheimer model it may prove to

be too costly.

The ent>-e impetus with feedback control is to drive the

deviation from the reference orbit to zero or at least to

some minimum. In some instances two different values of gain

will cause the same amount of deviation. In these instances

control gain costs will be the deciding factor. This intui-

tive optimization scheme is shown in Figure 11. Combinations

of deviation and control gain costs in sub-area A are consider-

ed to be more effective than those in sub-area B. Hence, the

overall underlying theme of this report is that stabilization

is more important than control gain cost. Thus, if a choice

between two identical orbits with different values of feed-

back gains is available; the one with the lower control gain

cost will be chosen. Since no formal optimization is attempted

in this report, the measure of deviation from the reference

is left to personal judgement. Since this is an orbiting

satellite, control must be applied as an acceleration. Over

the long term control gain costs are calculated by
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1T
cc  f la Idt (51)

T0 T
where

aT = Kp/AX2+ Ay2 + K r4V 7  2

this is shown schematically in the lower portion of Figure 12.

Crudely, this control cost can be interpreted as an average

acceleration requirement. The simplest feedback control sys-

tem to design is a constant gain system, which is shown sche-

matically in the upper portion of Figure 12.

Recalling equation (44)

a (t) = [At Xt)

and adding a constant gain feedback matrix K yields

6k(t) =[At] 6X(t) + [KsXt) (52)
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Simplifying (52) gives

6Xt A(t)] + [K] }6X(t) (53)

The stability of (53) cannot be determined with standard root

locus techniques because the [A(t] matrix is not constant but

time-varying and periodic. However, recalling that Poincar6

exponents are indicators of stability, a "quasi" root locus

can be made by solving (53) for the Poincare exponents and

plotting them as a function of feedback gain. Future refer-

ences to root locus shoud be understood to mean "quasi" root

locus. The elements of [K] determine which states will be
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used in the feedback loop. Specifically, the effect of

position state feedback on orbital stability can be observed

with one set of [K] elements. Likewise, effects of velocity

state feedback can be seen with a different set of elements;

or combining the two, the-effects of position and velocity

feedback can be observed. The resultant root locus plots of

the Wheeler model using position, velocity and position/vel-

ocity feedback are shown in Figures 13 to 15, respectively.

Note that Figures 13 and 14 are schematic representations of

the root locus using position and velocity feedback, respect-

ively. Figure 15 is representative of the effects of position/

velocity feedback only on the dominant unstable root. A

position/velocity gain ratio of 1 was used as the test case.

Feedback stability testing of L3 in the Heppenheimer

model requires two items: One, initial value of feedback

gain and two, a reference orbit defined. The most logical

initial gain to use is the minimum gain needed to stabilize

the Wheeler model; since any gain less than that would also

be insufficient to stabilize the Heppenheimer model. This

approximate minimum value of gain is read directly from the

root locus plots developed above. Next, a reference orbit is

required to provide the needed corrections used to stabilize

an unstable orbit such as L3. Any reference orbit can be

used; but to reduce the stabilizing control costs a reference

orbit that occurs naturally is desired. Capt. Wiesel (Ref 2)

found, as stated earlier, the reference orbit used in this

report. He found this orbit by searching for a set of initial
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conditions that would allow an orbit about L3 to close

on itself after one lunar synodic period. Unfortunately, his

orbit only closes on itself once, which is indicative of the

instability of all orbits about L3. Thus, without modifica-

tion Capt. Wiesel's orbit is unusable as a reference orbit.

Since his orbit did close at the end of the first month, that

portion can be re-used for each consecutive month as the ref-

erence orbit. Re-using Capt. Wiesel's reference orbit as it

stands could lead to divergence problems in a long term anal-

ysis. To prevent this his periodic one month orbit is ex-

pressed in a Fourier series (Ref 8:108) which will always

converge as a function of time. The loss of accuracy from

using this Fourier series approximation is less than ± l.xl0 - 0 .

Figures 16 to 21 represent the increased stabilizing effects

of position feedback with increasing feedback gain. The ref-

erence orbit is included in all figures so that a quantita-

tive assessment of feedback compensation can be made. Figure

22 illustrates the effects of position feedback gain versus

integrated control costs.

The use of just velocity feedback compensation was not

attempted with any degree of seriousness, because stability

in the Wheeler model could not be acheived with velocity

feedback. This can be verified by checking the root locus

shown in Figure 14. Only in the limit as gain -= would

stability be acheived. However, a few arbitrary values of

gain were used to illustrate this fact. These cases are

shown in Figures 23 to 25.
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Lastly, analysis of position/velocity feedback compensa-

tion were run using ratios of position gain (Kp) to velocity

gain (Kr) of .05; .5; 1; 10. These choices were somewhat

arbitrary, but were picked with some forethought. Ratios

.05 and .5 were selected to observe the stability effect of

a zero on each side of the dominant stable root. It was

theorized that since a zero location close to the dominant

root such as .05 and .5 would have little effect on stability;

then zeros placed much farther away from the dominant root

such as 1 and 10 would have a more profound effect on stabili-

ty. These effects are presented in Figures 26 to 29.
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IV. Results and Discussion

Results

A transitory degree of stability was acheived with only

position feedback. The duration of stability appeared to

be inversly proportional to the amount of gain used. That

is, with small values of gain (<150) the calculated orbit

would oscillate about the reference orbit with increasingly

larger amplitudes until all motion had degenerated into random

oscillations. This snowballing effect usually takes two to

four months depending upon the gain before completely degene-

rate motion occurs. Accordingly, large values of gain (>150)

would cause the orbit to deteriorate to wild oscillations in

much less time. These phenomena are illustrated in Figures

30 and 31. Figure 30 is the calculated orbit for two months

with feedback gain equal to 125. As can be seen, the orbit

is well behaved for approximately three-fourths of the two

month period. However, during the last one-fourth of its

period, the orbit begins to degenerate into a spiral or

rosette pattern that grows in amplitude with time. Figure

31 represents the same orbit, but with feedback gain equal

to 400 and for only one month. Notice again that it has

the snowball effect. It is obvious that the orbit has de-

generated to wild oscillations in less than one month.

No degree of stability was acheived using only velocity
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feedback, as mentioned in Section III. It is felt that the

system zero from using velocity feedback effectively blocked

the unstable root from migrating to the stable left-half

plane. Since that root remains in the right-half plane, the

system is always unstable regardless of the magnitude of

velocity feedback gain used. Figures 23 to 25 verify the

ineffectiveness of velocity feedback.

Position/velocity feedback did create the greatest de-

gree of orbital stability, but not as was originally antici-

pated. Gain ratios of .05 and .5 were completely ineffective

in producing any noticeable degree of stability. This is in

line with the behavior predicted in Section III and verified

in Figures 26 and 27. Earlier it was felt that moving the

zero location farther away from the dominant root would pro-

vide a much greater degree of system response to feedback

control. However, gain ratios of 1 and 10 were only margin-

ally effective. This was not an expected result. Figure 28

shows the marginal effect of a system zero located at 1. For

gain ratio K p/Kr = 1, values of Kr up to 300 were tried. The

results were all similar to those depicted in Figure 28.

Control gain costs for Kp/Kr = 1 ranged from .04251 for Kr = 1

to 8.8765 with K = 300. This translates into an approximater

range of AV of 43.4 m/s to 9071.8 m/s. For gain ratio

Kp/K r = 10, the effects of Kr between 1 and 100 were tried.

The only noticeable effect of increasing Kr was the increase

in control gain costs. They are .17676 with K = 1 to 3.8497r

with Kr = 100. Correspondingly, the AV range is 180.6 m/s to
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3934.4 m/s. Comparing Figures 26, 27, 28 and 29 clearly

showed that a zero location at 10 provided a more stable

orbit than was acheived with zeros at 1 or even .05 and .5,

but not nearly what was expected. In a final effort to acheive

a more respectable stabilized orbit gain ratio K p/Kr = 100 was

tried. This did bring about a dramatic increase in orbital

stability. Figures 32 to 34 show the effectiveness of this

gain ratio. With Kr = 10, this seemed to be the minimum

value that brought about the desired degree of stability.

Kr = 100 also acheived the same degree of stability, but with

an order of magnitude increase in control gain costs. Control

costs increased from .08032 with Kr = 1 to 3.8992 with Kr =

100. Again, the AV range is 82.1 m/s to 3984.9 m/s.

Comparing control costs for zero locations at 1, 10 and

100 with Kr = 10 versus the visual degree of stability shows

the calculated orbit zeros in on the reference orbit with an

increase in gain ratio while the respective control costs are

.30, .39 and .4. The better zero location, as far as stabil-

ity is concerned, is 100. However, in terms of cost, zero

location at 1 is the better location. Within the constraints

of the intuitive optimization scheme presented earlier, the

zero location at 100 is the desired location.

Discussion

Position feedback can be thought of as adding a spring

force in a simple harmonic oscillator. The spring would apply

a constant restoring force proportional to the displacement
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from a reference position, where the proportionality constant

is the spring constant, or in this case the feedback gain.

Thus, any orbital position error will generate a restoring

force opposing the position error. In essence, this type of

control over corrects for any error, i.e. the larger the

position error the larger the correction force. Since this

system has two oscillatory modes, one stable and one unstable,

each position error will have a component from both modes.

Therefore, part of the restoring force goes into supressing

the unstable mode; and the remainder contributes to the stable

oscillatory mode. Exciting the oscillatory mode creates a

larger displacement than the reference orbit predicts, and

this produces a position error in addition to the error from

the unstable mode. The cumulative effect from exciting the

stable oscillatory mode is the mechanism that creates the

snowball effect to system instability seen in Figures 30 and

31.

Velocity feedback is normally used to introduce damping

into a system. The net result of damping as time (t)

reduces the amplitude of the oscillatory mode to 0. This

damping effect is caused by introducing a zero into the sys-

tem's transfer function. Relating to this report, constant

gain velocity feedback introduced a zero at the origin of

the system's root locus. This has two effects: First, it

decreases the amplitude of the oscillatory mode. Second, it

keeps the unstable root in the right-half plane. Since the

unstable root is kept in the right-half plane, divergent or
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unstable motion occurs. With increasing gain the amplitude

does decrease due to the damping effect of velocity feedback,

but the divergent spiral due to the unstable root is still

quite evident.

Using both position and velocity feedback brought about

the desired motion. The effect of larger gain ratios was to

increase system response to feedback control. Gain ratios

of .05 and .5 did little to aid in system stability, because

the damping effect is so small. Gain ratios of 1 and 10 in-

creased the sensitivity of the system to feedback control but

not to a desired level. With the gain ratio at 100, the sys-

tem response has been enhanced to the point where position/

velocity feedback are effective feedback control elements.

This report did not utilize any sophisticated feedback

networks. This simplistic approach to orbital stability was

to show that an orbit about L3 could be stabilized and what

it might cost in terms of an approximate AV required. Al-

though stability could be acheived, more sophisticated

approaches could be used with a larger degree of effective-

ness. Two of these approaches would be modal control and

lead/lag compensation. As a result of this analysis, modal

control appears to be the most logical and easiest to imple-

ment. Since only one of the two modes of this system is

unstable, applying control to that mode and eliminating the

control from the oscillatory mode should be a more economical

approach. This would reduce the modal feedback coupling and

eliminate the snowball effect found in this report. Using

54



lead/lag compensation with velocity feedback would allow

placement of a zero at a more optimal location other than at

the origin of the root locus. Hence, a greater degree of

flexibility to system design would be possible. Correspond-

ingly, control gain costs can be minimized.

This report also neglected the effects of orbit plane

inclination, planetary perturbations and other minute forces

such as solar wind, radiation pressure, etc. The most im-

portant of these neglected perturbations is orbit plane in-

clination. Since planar motion was assumed throughout this

report, this major secondary perturbation was neglected. The

effect of orbit inclination is to introduce non-planar motion.

The long term cumulative effect of this unaccounted for motion

might be very detrimental to an orbit as sensitive to disturb-

ing forces as L3 , even though out of plane forces always tend

to return the satellite to the orbit plane.

In this model the control used requires continous know-

ledge of the position and velocity states. Laser or radar

ranging might be a method of providing the control system

with this information. Further consideration of measuring

the states beyond mentioning these feasible methods was not

considered.
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V. Summary and Recommendations

Summary

Using the Wheeler model as an approximate solution to the

reduced Heppenheimer model significantly reduced the amount of

trial and error testing that would have been otherwise neces-

sary. Analysis of the Poincare exponents, provided by the

Wheeler model, simplified the task of choosing the amount of

feedback gain to use. Long term stable motion near libration

point L3 could only be acheived with position/velocity feed-

back. The associated control gain costs indicate this is not

an economical method for stabilization. The Heppenheimer

model is an accurate model for studying orbital motion near

libration points.

Recommendations

Since a periodic orbit about L3 has been discovered and

it has been shown that it can be stabilized; any refinements

to the reference orbit and method of stabilization would be

natural follow-on topics. The most logical topic would be a

more sophisticated feedback controller. The idea of modal

control, mentioned earlier, needs to be examined in detail.

Lead/lag compensation could offer attractive stabilizing

benefits without a correspondingly large increase in control

costs. Also, a three dimensional stability analysis about
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L3 which includes the effects of orbit plane inclination

should be examined for applicibility to a "real world"

situation.

Finally, determining whether or not another periodic

orbit about L3 exists which closes on itself more than once,

would naturally lead to reduced control gain costs.
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Appendix A

Derivation of the

Heppenheimer Equations

The equations of motion for this model are given by the

vector sum of all gravitational forces acting on that body.

Newton's law of universal gravitation is applied to determine

those gravitational forces. Newton's law of universal gravi-

tation can be expressed mathematically as

GMMr
F = r 2  (A-l)-g rr

Figure 35 shows the vector diagram of an arbitrary four body

system.

From Newton's second law of motion,

F Mi
_= _t (A-2)

mi  -m i

where F is the vector sum of all forces. In this model only

the gravitational forces are considered.

Applying (A-2) to each of the four bodies in Figure 35

yields the following:
4 M

r GI rj (A-3)
j=2 r!

j-l 32 rj24

j#2
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4 M=-G r r.(A-5)

j J3

4 J_
4=-G r44 r.j (A-6)

j=l r 4 -3
j#4

Arbitrarily selecting body 1 as the Earth and body 4 as

the satellite, the position vector for the satellite with re-

spect to the Earth is

r =r -r (A-7)

Taking two time derivatives yields

= r -r (A-8)

Substituting (A-6) and (A-3) into (A-8) then simplifying

yields
G(MI M 4)r r1 r34~ 31

r -1M- 2 3 - -9)-- 1 4  2[!3 r 4 j[ 4 r3 1J(A
9 )

As a simplification, arbitrarily let body 2 be the Sun and

body 3 the Moon. Also letting M + M = 1 where M=1-1 3 1

M = V and G = 1. Then M = M , and with respect to the other3 2 S

bodies involved M = 0. By noting r = -r and r = -r
--12 -21 -13 -31

equation (A-9) reduces to

( r-S - s -+ =E (A-10)

r rc C.cQ sr rJLr rM

where the subscripts c, s and m stand for satellite, Sun

and Moon, respectively.

The equations of motion for the Moon are derived in the

same manner as the equations of motion for the satellite.

This time the system is solved for i ; and invoking the
613
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same simplyfing assumptions for the satellite gives

r r
+ -13 = 3 + rl2  (A-li)- 3 r- - r 3 r 3

Lastly, the equations of motion for the Sun are derived

using a two-body approximation. Since the Sun is the domi-

nant gravitational body in this model; the combined perturb-

ing effects of the Earth, Moon and satellite upon the Sun

are negligible when compared to the reverse effects. In

this two-body approximation the masses of the Moon and Earth

are assumed to be concentrated at their barycenter. Addi-

tionally, the mass of the satellite, with respect to the Sun,

Earth and Moon is assumed to be zero. A known solution to

this two-body approximation can be shown to be

p
=s P (Ref 9:20) (A-12)rs 1+ esCOS s

where

P = as(l-e2)

where as is the solar semimajor axis; es is the solar eccen-

tricity and vs is the true anomaly. Equation (A-12) is a

polar representation of an elliptic conic section. In terms

of Earth-centered non-rotating coordinates the Sun revolves

as an unperturbed ellipse with respect to the Earth/Moon

barycenter. Rewriting (A-12) into cartesian x/y components

with respect to the Earth/Moon barycenter yields

Xs = jXm + rscosvs  (A-13)

YS = PYm + rssinvs (A-14)

where subscripts m refers to the Moon and U is the distance

from the Earth/Moon barycenter to the Earth.
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